Logo Search packages:      
Sourcecode: zaptel version File versions

wcfxsusb.c

/*
 * Wildcard S100U USB FXS Interface Zapata Telephony Driver
 *
 * Written by Mark Spencer <markster@linux-support.net>
 *            Matthew Fredrickson <creslin@linux-support.net>
 *
 * Copyright (C) 2001, Linux Support Services, Inc.
 *
 * All rights reserved.
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 * 
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. 
 *
 */

/* Save power at the expense of not always being able to transmit on hook.  If
   this is set, we only transit on hook for some time after a ring 
   (POWERSAVE_TIMEOUT) */

#define PROSLIC_POWERSAVE
#define POWERSAVE_TIME 4000

#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/usb.h>
#include <linux/errno.h>

#include <linux/version.h>
#if LINUX_VERSION_CODE > KERNEL_VERSION(2,4,19)
#define USB2420
#endif

#ifdef STANDALONE_ZAPATA

#include "zaptel.h"
#else
#include <linux/zaptel.h>
#endif /* STANDALONE_ZAPATA */

#include "wcfxsusb.h"
#include "proslic.h"


#ifdef DEBUG_WILDCARD
#define DPRINTK(x) printk x
#else
#define DPRINTK(x)
#endif

// Function prototypes
static int readProSlicDirectReg(struct usb_device *dev, unsigned char address, unsigned char* data);
static int initializeIndirectRegisters(struct usb_device *dev);
static int verifyIndirectRegisters(struct usb_device *dev);
static int writeProSlicDirectReg(struct usb_device *dev, unsigned char address, unsigned char data);
static int writeProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short data);
static int readProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short *data);
static int writeProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short data);

static alpha  indirect_regs[] =
{
{0,"DTMF_ROW_0_PEAK",0x55C2},
{1,"DTMF_ROW_1_PEAK",0x51E6},
{2,"DTMF_ROW2_PEAK",0x4B85},
{3,"DTMF_ROW3_PEAK",0x4937},
{4,"DTMF_COL1_PEAK",0x3333},
{5,"DTMF_FWD_TWIST",0x0202},
{6,"DTMF_RVS_TWIST",0x0202},
{7,"DTMF_ROW_RATIO_TRES",0x0198},
{8,"DTMF_COL_RATIO_TRES",0x0198},
{9,"DTMF_ROW_2ND_ARM",0x0611},
{10,"DTMF_COL_2ND_ARM",0x0202},
{11,"DTMF_PWR_MIN_TRES",0x00E5},
{12,"DTMF_OT_LIM_TRES",0x0A1C},
{13,"OSC1_COEF",0x6D40},
{14,"OSC1X",0x0470},
{15,"OSC1Y",0x0000},
{16,"OSC2_COEF",0x4A80},
{17,"OSC2X",0x0830},
{18,"OSC2Y",0x0000},
{19,"RING_V_OFF",0x0000},
{20,"RING_OSC",0x7EF0},
{21,"RING_X",0x0160},
{22,"RING_Y",0x0000},
{23,"PULSE_ENVEL",0x2000},
{24,"PULSE_X",0x2000},
{25,"PULSE_Y",0x0000},
//{26,"RECV_DIGITAL_GAIN",0x4000},  // playback volume set lower
{26,"RECV_DIGITAL_GAIN",0x2000},    // playback volume set lower
{27,"XMIT_DIGITAL_GAIN",0xc000 /* was 0x4000 */ },
{28,"LOOP_CLOSE_TRES",0x1000},
{29,"RING_TRIP_TRES",0x3600},
{30,"COMMON_MIN_TRES",0x1000},
{31,"COMMON_MAX_TRES",0x0200},
{32,"PWR_ALARM_Q1Q2",0x0550},
{33,"PWR_ALARM_Q3Q4",0x2600},
{34,"PWR_ALARM_Q5Q6",0x1B80},
{35,"LOOP_CLOSURE_FILTER",0x8000},
{36,"RING_TRIP_FILTER",0x0320},
{37,"TERM_LP_POLE_Q1Q2",0x0100},
{38,"TERM_LP_POLE_Q3Q4",0x0100},
{39,"TERM_LP_POLE_Q5Q6",0x0010},
{40,"CM_BIAS_RINGING",0x0C00},
{41,"DCDC_MIN_V",0x0C00},
{42,"DCDC_XTRA",0x1000},
};

#define WCUSB_SPORT0                      0x26
#define WCUSB_SPORT1                      0x27
#define WCUSB_SPORT2                      0x28
#define WCUSB_SPORT_CTRL            0x29

#define WC_AUX0   0x1
#define WC_AUX1 0x2
#define WC_AUX2 0x4
#define WC_AUX3 0x8

#define CONTROL_TIMEOUT_MS          (500)       /* msec */
#define CONTROL_TIMEOUT_JIFFIES ((CONTROL_TIMEOUT_MS * HZ) / 1000)

#define REQUEST_NORMAL 4

#define FLAG_RUNNING    (1 << 0)

static int debug = 0;

struct stinky_urb {
#ifdef USB2420
      struct urb urb;
      struct iso_packet_descriptor isoframe[1];
#else
      urb_t urb;
      iso_packet_descriptor_t isoframe[1];
#endif

};

typedef enum {
      STREAM_NORMAL,
      STREAM_DTMF,
} stream_t;

typedef enum {
      STATE_WCREAD_WRITEREG,
      STATE_WCREAD_READRES,
      STATE_WCWRITE_WRITEREG,
      STATE_WCWRITE_WRITERES,
} control_state_t;

typedef enum {
      WC_KEYPAD,
      WC_PROSLIC,
} dev_type_t;

typedef enum {
      STATE_FOR_LOOP_1_OUT,
      STATE_FOR_LOOP_2_IN,
      STATE_FOR_LOOP_PROC_DATA,
      STATE_FOR_LOOP_CLEAR_DIGIT,
} keypad_state_t;

struct wc_keypad_data {
      /* Keypad state monitoring variables */
      keypad_state_t state;
#ifdef USB2420
      struct urb urb;
#else
      urb_t urb;
#endif
      int running;
      char data;
      char data12;
      char tmp;
      int scanned_event;
      int i;
      int count;
      /* DTMF tone generation stuff for zaptel */
      struct zt_tone_state ts;
      struct zt_tone *tone;
};

#define WC_IO_READ      (1 << 0)
#define WC_IO_WRITE     (1 << 1)

#define IO_READY(x)     (((x) & (WC_IO_READ | WC_IO_WRITE)) == \
                        (WC_IO_READ | WC_IO_WRITE))

struct wc_usb_pvt {
      struct usb_device *dev;
      dev_type_t devclass;
      unsigned int readpipe;
      unsigned int writepipe;
      int usecount;
      int dead;
      int hardwareflags;
      struct zt_span span;
      struct zt_chan chan;
      struct stinky_urb dataread[2];
      struct stinky_urb datawrite[2];
      int iostate;      /* Whether reads/writes are complete */
#ifdef USB2420
      struct urb *pendingurb; /* Pending URB for transmission */
      struct urb        control;
      struct usb_ctrlrequest  dr;
#else

      urb_t *pendingurb;      /* Pending URB for transmission */
      urb_t             control;
      devrequest  dr;
#endif
      control_state_t controlstate;
      int urbcount;
      int flags;
      int timer;
      int lowpowertimer;
      int idletxhookstate;
      int hookstate;
      __u8 newtxhook;
      __u8 txhook;
      int pos;
      unsigned char auxstatus;
      unsigned char wcregindex;
      unsigned char wcregbuf[4];
      unsigned char wcregval;
      short readchunk[ZT_MAX_CHUNKSIZE * 2];
      short writechunk[ZT_MAX_CHUNKSIZE * 2];
      stream_t sample;
      void *pvt_data;
};

struct wc_usb_desc {
      char *name;
      int flags;
};

#define FLAG_FLIP_RELAYS      (1 << 0)

static struct wc_usb_desc wcusb = { "Wildcard S100U USB FXS Interface" };
static struct wc_usb_desc wcusb2 = { "Wildcard S110U USB FXS Interface", FLAG_FLIP_RELAYS };
static struct wc_usb_desc wc_usb_phone = { "Wildcard Phone Test driver" };
static struct wc_usb_pvt *ifaces[WC_MAX_IFACES];



static void wcusb_check_keypad(struct wc_usb_pvt *p);
static int set_aux_ctrl(struct wc_usb_pvt *p, char auxpins, int on);



static int Wcusb_WriteWcRegs(struct usb_device *dev, unsigned char index, 
                                unsigned char *data, int len)
{
      unsigned int pipe = usb_sndctrlpipe(dev, 0);
      int requesttype;
      int res;

      requesttype = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE;

      res = usb_control_msg(dev, pipe, REQUEST_NORMAL, requesttype, 
                                          0, index, data, len, CONTROL_TIMEOUT_JIFFIES);
      if (res == -ETIMEDOUT) {
            printk("wcusb: timeout on vendor write\n");
            return -1;
      } else if (res < 0) {
            printk("wcusb: Error executing control: status=%d\n", le32_to_cpu(res));
            return -1;
      }
      return 0;
}                               

static int Wcusb_ReadWcRegs(struct usb_device *dev, unsigned char index, 
                                unsigned char *data, int len)
{
      unsigned int pipe = usb_rcvctrlpipe(dev, 0);
      int requesttype;
      int res;

      requesttype = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;

      res = usb_control_msg(dev, pipe, REQUEST_NORMAL, requesttype, 
                                          0, index, data, len, CONTROL_TIMEOUT_JIFFIES);
      if (res == -ETIMEDOUT) {
            printk("wcusb: timeout on vendor write\n");
            return -1;
      } else if (res < 0) {
            printk("wcusb: Error executing control: status=%d\n", le32_to_cpu(res));
            return -1;
      } else {
            DPRINTK(("wcusb: Executed read, result = %d (data = %04x)\n", le32_to_cpu(res), (int) *data));
      }
      return 0;
}                               

#ifdef USB2420
static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb));
static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb));
static void wcusb_async_control(struct urb *urb);
#else
static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(urb_t *urb));
static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(urb_t *urb));
static void wcusb_async_control(urb_t *urb);
#endif

static void proslic_read_direct_async(struct wc_usb_pvt *p, unsigned char address)
{
      p->wcregindex = address;
      p->wcregbuf[0] = address | 0x80;
      p->wcregbuf[1] = 0;
      p->wcregbuf[2] = 0;
      p->wcregbuf[3] = 0x67;
      wcusb_async_write(p, WCUSB_SPORT0, p->wcregbuf, 4, STATE_WCREAD_WRITEREG, wcusb_async_control);
}

static void proslic_write_direct_async(struct wc_usb_pvt *p, unsigned char address, unsigned char val)
{
      p->wcregindex = address;
      p->wcregbuf[0] = address & 0x7f;
      p->wcregbuf[1] = val;
      p->wcregbuf[2] = 0;
      p->wcregbuf[3] = 0x27;
      wcusb_async_write(p, WCUSB_SPORT0, p->wcregbuf, 4, STATE_WCWRITE_WRITERES, wcusb_async_control);
}

#ifdef USB2420
static void wcusb_async_control(struct urb *urb)
#else
static void wcusb_async_control(urb_t *urb)
#endif
{
      struct wc_usb_pvt *p = urb->context;
      p->urbcount--;
      if (urb->status) {
            printk("Error in transfer...\n");
            p->timer = 50;
            return;
      }
      if (!(p->flags & FLAG_RUNNING)) {
            return;
      }
      switch (p->controlstate) {
      case STATE_WCREAD_WRITEREG:
            /* We've written the register to sport0, now read form sport 1 */
            wcusb_async_read(p, WCUSB_SPORT1, &p->wcregval, 1, STATE_WCREAD_READRES, wcusb_async_control);
            return;
      case STATE_WCREAD_READRES:
            switch(p->wcregindex) {
            case 68:
                  if (!p->hookstate && (p->wcregval & 1)) {
                        p->hookstate = 1;
                        if (debug)
                              printk("Going off hook...\n");
                        zt_hooksig(&p->chan, ZT_RXSIG_OFFHOOK);
                  } else if (p->hookstate && !(p->wcregval & 1)) {
                        p->hookstate = 0;
                        if (debug)
                              printk("Going on hook...\n");
                        zt_hooksig(&p->chan, ZT_RXSIG_ONHOOK);
                  }
                  /* Set outgoing hook state if necessary */
                  if (p->txhook != p->newtxhook) {
                        if (debug)
                              printk("Really setting hook state to %d\n", p->newtxhook);
                        p->txhook = p->newtxhook;
                        proslic_write_direct_async(p, 64, p->newtxhook);
                  } else
                        p->timer = 50;
                  break;
            case 64:
                  if (debug)
                        printk("Read hook state as %02x\n", p->wcregval);
                  p->timer = 50;
                  break;
            default:
                  printk("dunno what to do with read/regindex %d\n", p->wcregindex);
                  p->wcregindex = 0;
            }
            return;
      case STATE_WCWRITE_WRITERES:
            switch(p->wcregindex) {
            case 64:
                  if (debug) {
                        printk("Hook transition complete to %d\n", ((char *)(urb->transfer_buffer))[1]);
#ifdef BOOST_RINGER
                  }
                  if (p->txhook == 4) {
                        /* Ringing -- boost battery to 96V */
                        proslic_write_direct_async(p, 74, 0x3f);
                  } else {
                        /* Leave battery at default 75V */
                        proslic_write_direct_async(p, 74, 0x32);
                  }
                  break;
            case 74:
                  if (debug) {
                        printk("Battery set to -%dV\n", ((char *)(urb->transfer_buffer))[1] * 3 / 2);
#endif
                        proslic_read_direct_async(p, 64);
                  } else
                        p->timer = 50;
                  break;
            default:
                  printk("dunno what to do with write/regindex %d\n", p->wcregindex);
                  p->wcregindex = 0;
            }
            return;
      default:
            printk("async control in unknown state %d\n", p->controlstate);
      }
}

#ifdef USB2420
static void keypad_check_done(struct urb *urb)
#else
static void keypad_check_done(urb_t *urb)
#endif
{
      struct wc_usb_pvt *p = urb->context;
      struct wc_keypad_data *d = p->pvt_data;
      static char aux_pattern[] = {0x1e, 0x1d, 0x17, 0xf};
      char digit = 'z';

      p->urbcount--;
      if (!d->running) {
            printk("Stopping stream (check_done)\n");
            return;
      }

      if (urb->status) {
            printk("status %d\n", urb->status);
      }

      if (debug) printk("i is %d\n", d->i);
      switch (d->state) {
loop_start:
            case STATE_FOR_LOOP_1_OUT:
                  if (debug) printk("data12 is %x\n", d->data12);
                  if(d->i < sizeof(aux_pattern) / sizeof(char)) {
                        d->tmp = aux_pattern[d->i] | (d->data12 & 0xe0);
                        d->state = STATE_FOR_LOOP_2_IN;
                        if (debug) printk("tmp is %x\n", d->tmp);
                        wcusb_async_write(p, 0x12, &d->tmp, 1, 0, keypad_check_done);
                        return;
                  } else {
                        goto func_end;
                  }
            case STATE_FOR_LOOP_2_IN:
                  d->state = STATE_FOR_LOOP_PROC_DATA;
                  wcusb_async_read(p, 0xc0, &d->data, 1, 0, keypad_check_done);
                  return;
            case STATE_FOR_LOOP_PROC_DATA:
                  d->state = STATE_FOR_LOOP_CLEAR_DIGIT;
                  if(debug) printk("data is %x\n", d->data);
                  if ((d->data & 0x1f) != 0x1f) {
                        if(d->data == 0xe && aux_pattern[d->i] == 0x1e) { digit = '1';}
                        else if(d->data == 0xd && aux_pattern[d->i] == 0x1e) { digit = '2';}
                        else if(d->data == 0xb && aux_pattern[d->i] == 0x1e) { digit = '3';}
                        else if(d->data == 0x7 && aux_pattern[d->i] == 0x1e) {
                              p->hookstate = 0; /* On||Off */ 
                              zt_hooksig(&p->chan, ZT_RXSIG_ONHOOK);
                        }

                        else if(d->data == 0xe && aux_pattern[d->i] == 0x1d) { digit = '4';}
                        else if(d->data == 0xd && aux_pattern[d->i] == 0x1d) { digit = '5';}
                        else if(d->data == 0xb && aux_pattern[d->i] == 0x1d) { digit = '6';}
                        else if(d->data == 0x7 && aux_pattern[d->i] == 0x1d) {
                              p->hookstate = 1;/* Dial */
                              zt_hooksig(&p->chan, ZT_RXSIG_OFFHOOK);
                        }

                        else if(d->data == 0xe && aux_pattern[d->i] == 0x17) { digit = '7';}
                        else if(d->data == 0xd && aux_pattern[d->i] == 0x17) { digit = '8';}
                        else if(d->data == 0xb && aux_pattern[d->i] == 0x17) { digit = '9';}
                        else if(d->data == 0x7 && aux_pattern[d->i] == 0x17) d->scanned_event = 15; /* ReDial */
      
                        else if(d->data == 0xe && aux_pattern[d->i] == 0xf) { digit = '*';}/* '*' */
                        else if(d->data == 0xd && aux_pattern[d->i] == 0xf) { digit = '0';}
                        else if(d->data == 0xb && aux_pattern[d->i] == 0xf) { digit = '#';} /* '#' */
                        else if(d->data == 0x7 && aux_pattern[d->i] == 0xf) d->scanned_event = 16; /* Volume? */
                        else {
                              (d->i)++;
                              if (debug) printk("Scanned event %d; data = %x\n", d->scanned_event, d->data);
                              goto loop_start;
                        }
                  } else {
                        if(debug) printk("Hit new if\n");
                        goto func_end;
                  }
                  if (debug) printk("wcusb: got digit %d\n", d->scanned_event);
                  if (digit != 'z') {
                        d->tone = zt_dtmf_tone(digit, 0);
                        if (!d->tone) {
                              printk("wcusb: Didn't get a tone structure\n");
                              goto func_end;
                        }
                        zt_init_tone_state(&d->ts, d->tone);
                        p->sample = STREAM_DTMF;
                  }
                  d->count = 0;
            case STATE_FOR_LOOP_CLEAR_DIGIT:
                  if (((d->data & 0xf) != 0xf) && d->count < 200) {
                        wcusb_async_read(p, 0xc0, &d->data, 1, 0, keypad_check_done);
                        return;
                  }
                  (d->i)++;
                  p->sample = STREAM_NORMAL;
                  goto loop_start;
      }
func_end:
      p->timer = 100;
      return;
}

static void wcusb_check_interrupt(struct wc_usb_pvt *p)
{
      /* Start checking for interrupts */
      if (p->devclass == WC_KEYPAD) {
            wcusb_check_keypad(p);
      } else {
            proslic_read_direct_async(p, 68);
      }
      return;
}

#ifdef USB2420
static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complyyete)(struct urb *urb))
#else
static int wcusb_async_read(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(urb_t *urb))
#endif
{
      __u16 size = len;
      __u16 ind = index;
#ifdef USB2420
      struct urb *urb = &p->control;
      memset(urb, 0, sizeof(struct urb));

      p->dr.bRequestType = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
      p->dr.bRequest = REQUEST_NORMAL;
      p->dr.wValue = 0;
      p->dr.wIndex = cpu_to_le16(ind);
      p->dr.wLength = cpu_to_le16(size);
#else
      urb_t *urb = &p->control;
      memset(urb, 0, sizeof(urb_t));

      p->dr.requesttype = USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
      p->dr.request = REQUEST_NORMAL;
      p->dr.value = 0;
      p->dr.index = cpu_to_le16(ind);
      p->dr.length = cpu_to_le16(size);
#endif

      FILL_CONTROL_URB(urb, p->dev, usb_rcvctrlpipe(p->dev, 0), (unsigned char *)&p->dr, data, len, complete, p);
      if (usb_submit_urb(urb)) {
            printk("wcusb_async_read: control URB died\n");
            return -1;
      }
      p->controlstate = state;
      p->urbcount++;
      return 0;
}

#ifdef USB2420
static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(struct urb *urb))
#else
static int wcusb_async_write(struct wc_usb_pvt *p, unsigned char index, unsigned char *data, int len, int state, void (*complete)(urb_t *urb))
#endif
{
      __u16 size = len;
      __u16 ind = index;
#ifdef USB2420
      struct urb *urb = &p->control;
      memset(urb, 0, sizeof(struct urb));

      p->dr.bRequestType = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
      p->dr.bRequest = REQUEST_NORMAL;
      p->dr.wValue = 0;
      p->dr.wIndex = cpu_to_le16(ind);
      p->dr.wLength = cpu_to_le16(size);
#else
      urb_t *urb = &p->control;
      memset(urb, 0, sizeof(urb_t));

      p->dr.requesttype = USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE;
      p->dr.request = REQUEST_NORMAL;
      p->dr.value = 0;
      p->dr.index = cpu_to_le16(ind);
      p->dr.length = cpu_to_le16(size);
#endif

      FILL_CONTROL_URB(urb, p->dev, usb_sndctrlpipe(p->dev, 0), (unsigned char *)&p->dr, data, len, complete, p);
      if (usb_submit_urb(urb)) {
            printk("wcusb_async_write: control URB died\n");
            p->timer = 50;
            return -1;
      }
      p->controlstate = state;
      p->urbcount++;
      return 0;
}

/*
**    Write register to Wc560
*/
static int wcoutp(struct usb_device *dev, unsigned char address, unsigned char data)
{
      if (!Wcusb_WriteWcRegs(dev, address, &data, 1))
            return 0;

      return -1;
}

/*
**    read register from Wc560
*/
static int wcinp(struct usb_device *dev, unsigned char address, unsigned char* data )
{
      if (!Wcusb_ReadWcRegs(dev, address, data, 1))
            return 0;

      return -1;
}

static int waitForProSlicIndirectRegAccess(struct usb_device *dev)
{
    unsigned char count, data;
    count = 0;
    while (count++ < 3)
       {
            data = 0;
            readProSlicDirectReg(dev, I_STATUS, &data);

            if (!data)
                  return 0;

       }

    if(count > 2) printk(" ##### Loop error #####\n");

      return -1;
}

static int writeProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short data)
{
      
   if(!waitForProSlicIndirectRegAccess(dev))
      {
            if (!writeProSlicDirectReg(dev, IDA_LO,(unsigned char)(data & 0xFF)))
            {
                  if(!writeProSlicDirectReg(dev, IDA_HI,(unsigned char)((data & 0xFF00)>>8)))
                  {
                        if(!writeProSlicDirectReg(dev, IAA,address))
                              return 0;
                  }
            }
      }

      return -1;
}

/*
**    Read register from ProSlic
*/
int readProSlicDirectReg(struct usb_device *dev, unsigned char address, unsigned char* dataRead)
{
      unsigned char data[4];

      data[0] = address | 0x80;
      data[1] = 0;
      data[2] = 0;
      data[3] = 0x67;

      // write to WC register 0x26
      Wcusb_WriteWcRegs(dev, WCUSB_SPORT0, data, 4);
      Wcusb_ReadWcRegs(dev, WCUSB_SPORT1, data, 1);
      *dataRead = data[0];

      return 0;
}

/*
**    Write register to ProSlic
*/
int writeProSlicDirectReg(struct usb_device *dev, unsigned char address, unsigned char RegValue)
{
      unsigned char data[4];

      data[0] = address & 0x7f;
      data[1] = RegValue;
      data[2] = 0;
      data[3] = 0x27;

      // write to WC register 0x26
      return Wcusb_WriteWcRegs(dev, WCUSB_SPORT0, data, 4);
}

static int readProSlicInDirectReg(struct usb_device *dev, unsigned char address, unsigned short *data)
{ 
    if (!waitForProSlicIndirectRegAccess(dev))
       {
            if (!writeProSlicDirectReg(dev,IAA,address))
            {
                  if(!waitForProSlicIndirectRegAccess(dev))
                  {
                        unsigned char data1, data2;

                        if (!readProSlicDirectReg(dev,IDA_LO, &data1) && !readProSlicDirectReg (dev, IDA_HI, &data2))
                        {
                              *data = data1 | (data2 << 8);
                              return 0;
                        } else 
                              printk("Failed to read direct reg\n");
                  } else
                        printk("Failed to wait inside\n");
            } else
                  printk("failed write direct IAA\n");
       } else
            printk("failed to wait\n");

    return -1;
}

static int initializeIndirectRegisters(struct usb_device *dev)
{
      unsigned char i;

      for (i=0; i<43; i++)
      {
            if(writeProSlicInDirectReg(dev, i,indirect_regs[i].initial))
                  return -1;
      }

      return 0;
}

static int verifyIndirectRegisters(struct usb_device *dev)
{ 
      int passed = 1;
      unsigned short i,j, initial;

      for (i=0; i<43; i++) 
      {
            if(readProSlicInDirectReg(dev, (unsigned char) i, &j)) {
                  printk("Failed to read indirect register %d\n", i);
                  return -1;
            }
            initial= indirect_regs[i].initial;

            if ( j != initial )
            {
                   printk("!!!!!!! %s  iREG %X = %X  should be %X\n",
                        indirect_regs[i].name,i,j,initial );
                   passed = 0;
            }     
      }

    if (passed) {
            if (debug)
                  printk("Init Indirect Registers completed successfully.\n");
    } else {
            printk(" !!!!! Init Indirect Registers UNSUCCESSFULLY.\n");
    }

      return 0;
}

static int calibrateAndActivateProSlic(struct usb_device *dev)
{ 
      unsigned char x;

      if(writeProSlicDirectReg(dev, 92, 0xc8))
             return -1;

      if(writeProSlicDirectReg(dev, 97, 0))
             return -1;

      if(writeProSlicDirectReg(dev, 93, 0x19))
             return -1;

      if(writeProSlicDirectReg(dev, 14, 0))
             return -1;

      if(writeProSlicDirectReg(dev, 93, 0x99))
             return -1;

      if(!readProSlicDirectReg (dev, 93, &x))
      {
            if (debug)
                  printk("DC Cal x=%x\n",x);

            if (!writeProSlicDirectReg(dev, 97, 0))
            {
               if(!writeProSlicDirectReg(dev, CALIBR1, CALIBRATE_LINE))
                  {
                        unsigned char data;

                         if(!readProSlicDirectReg(dev, CALIBR1, &data))
                                     return writeProSlicDirectReg(dev, LINE_STATE,ACTIVATE_LINE);
                  }
            }
      }

      return -1;
}

static int InitProSlic(struct usb_device *dev)
{
    if (writeProSlicDirectReg(dev, 67, 0x0e)) 
            /* Disable Auto Power Alarm Detect and other "features" */
             return -1;
    if (initializeIndirectRegisters(dev)) {
            printk(KERN_INFO "Indirect Registers failed to initialize.\n");
             return -1;
      }
    if (verifyIndirectRegisters(dev)) {
            printk(KERN_INFO "Indirect Registers failed verification.\n");
             return -1;
      }
    if (calibrateAndActivateProSlic(dev)) {
            printk(KERN_INFO "ProSlic Died on Activation.\n");
             return -1;
      }
    if (writeProSlicInDirectReg(dev, 97, 0x0)) { // Stanley: for the bad recording fix
             printk(KERN_INFO "ProSlic IndirectReg Died.\n");
             return -1;
      }
    if (writeProSlicDirectReg(dev, 1, 0x2a)) { // U-Law GCI 8-bit interface
             printk(KERN_INFO "ProSlic DirectReg Died.\n");
             return -1;
      }
    if (writeProSlicDirectReg(dev, 2, 0))    // Tx Start count low byte  0
             return -1;
    if (writeProSlicDirectReg(dev, 3, 0))    // Tx Start count high byte 0
             return -1;
    if (writeProSlicDirectReg(dev, 4, 0))    // Rx Start count low byte  0
             return -1;
    if (writeProSlicDirectReg(dev, 5, 0))    // Rx Start count high byte 0
             return -1;
    if (writeProSlicDirectReg(dev, 8, 0x0))    // disable loopback
             return -1;
    if (writeProSlicDirectReg(dev, 18, 0xff))     // clear all interrupt
             return -1;
    if (writeProSlicDirectReg(dev, 19, 0xff)) 
             return -1;
    if (writeProSlicDirectReg(dev, 20, 0xff)) 
             return -1;
    if (writeProSlicDirectReg(dev, 21, 0x00))   // enable interrupt
             return -1;
    if (writeProSlicDirectReg(dev, 22, 0x02))   // Loop detection interrupt
             return -1;
    if (writeProSlicDirectReg(dev, 23, 0x01))   // DTMF detection interrupt
             return -1;
    if (writeProSlicDirectReg(dev, 72, 0x20))
            return -1;
#ifdef BOOST_RINGER
      /* Beef up Ringing voltage to 89V */
      if (writeProSlicInDirectReg(dev, 23, 0x1d1))
                  return -1;
#endif
      return 0;
}

static int InitHardware(struct wc_usb_pvt *p)
{
      struct usb_device *dev = p->dev;

      switch (p->devclass) {
            case WC_PROSLIC:
            if (wcoutp(dev, 0x12, 0x00))  // AUX6 as output, set to low
                  return -1;

            if (wcoutp(dev, 0x13, 0x40))  // AUX6 is output
                        return -1;

            if (wcoutp(dev, 0, 0x50))     // extrst, AUX2 is suspend
                        return -1;

            if (wcoutp(dev, 0x29, 0x20))  // enable SerialUP AUX pin definition
                        return -1;

            if(wcoutp(dev, 0, 0x51))      // no extrst, AUX2 is suspend
                        return -1;
      /* Make sure there is no gain */
            if (wcoutp(dev, 0x22, 0x00))
                  return -1;
            if (wcoutp(dev, 0x23, 0xf2))
                  return -1;
            if (wcoutp(dev, 0x24, 0x00))
                  return -1;
            if (wcoutp(dev, 0x25, 0xc9))
                  return -1;
    // Now initial Proslic
            if(InitProSlic(dev)) {
                  printk("Failed to initialize proslic\n");
                  return -1;
            }
            case WC_KEYPAD:
            set_aux_ctrl(p, WC_AUX0, 1);
            set_aux_ctrl(p, WC_AUX1, 1);
            set_aux_ctrl(p, WC_AUX2, 1);
            set_aux_ctrl(p, WC_AUX3, 1);
      }

      if (debug)
            printk("Setting up correct altsettings\n");

      /* Setup correct settings (8000 Hz, signed linear) */
      if (usb_set_interface(dev, 2, 1)) 
            printk("Unable to setup USB interface 2 to altsetting 1\n");
      if (usb_set_interface(dev, 3, 1))
            printk("Unable to setup USB interface 3 to altsetting 1\n");

    DPRINTK("<<< Exit InitHardware\n");
    return 0; 
}

static struct usb_device_id wc_dev_ids[] = {
        /* This needs to be a USB audio device, and it needs to be made by us and have the right device ID */
      { match_flags: (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_DEVICE),
        bInterfaceClass: USB_CLASS_AUDIO,
        bInterfaceSubClass: 1,
        idVendor: 0x06e6,                 
        idProduct: 0x831c,          /* Product ID / Chip configuration (you can't change this) */
        driver_info: (unsigned long)&wcusb,
      },
      { match_flags: (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_DEVICE),
        bInterfaceClass: USB_CLASS_AUDIO,
        bInterfaceSubClass: 1,
        idVendor: 0x06e6,                 /*  */
        idProduct: 0x831e,          /* Product ID / Chip configuration (you can't change this) */
        driver_info: (unsigned long)&wcusb2,
      },
      { match_flags: (USB_DEVICE_ID_MATCH_INT_CLASS | USB_DEVICE_ID_MATCH_INT_SUBCLASS | USB_DEVICE_ID_MATCH_DEVICE),
        bInterfaceClass: USB_CLASS_AUDIO,
        bInterfaceSubClass: 1,
        idVendor: 0x06e6,                 /*  */
        idProduct: 0xb210,
        driver_info: (unsigned long)&wc_usb_phone,
      },
      { }   /* Terminating Entry */
};

// Don't call from an interrupt context
static int set_aux_ctrl(struct wc_usb_pvt *p, char uauxpins, int on)
{
      char udata12 = 0;
      char udata13 = 0;

      wcinp(p->dev, 0x12, &udata12);
      wcinp(p->dev, 0x13, &udata13);

      wcoutp(p->dev, 0x12, on ? (uauxpins | udata12) : (~uauxpins & udata12));
      wcoutp(p->dev, 0x13, uauxpins | udata13);

      return 0;
}
      
static void wcusb_check_keypad(struct wc_usb_pvt *p)
{
      struct wc_keypad_data *d = p->pvt_data;

      if (!d->running) {
            printk("Stopping keypad stream\n");
            return;
      }
      if (debug) printk("Launched a packet\n");
      d->state = STATE_FOR_LOOP_1_OUT;
      d->data = -1;
      d->data12 = -1;
      d->scanned_event = -1;
      d->i = 0;
      wcusb_async_read(p, 0x12, &d->data12, 1, 0, keypad_check_done);
      return;
}

static char wc_dtmf(struct wc_usb_pvt *p)
{
      struct wc_keypad_data *d = p->pvt_data;
      short linsample = 0;

      if (!d) {
            printk("NULL pointer, go away\n");
            return 0;
      }

      linsample = zt_tone_nextsample(&d->ts, d->tone);


      return ZT_LIN2MU(linsample);
}

static void wcusb_do_io(struct wc_usb_pvt *p, struct urb *out, struct urb *in)
{
      /* This function performs glues together the USB side
         with the zaptel side, always doing things in receive/transmit
         order */

      int x;
      short *ochunk = out->transfer_buffer;
      short *ichunk = in->transfer_buffer;

      /* Perform input preparations */
      switch (p->sample) {
            case STREAM_NORMAL:
                  for (x = 0; x < ZT_CHUNKSIZE; x++) {
                        p->chan.readchunk[x] = ZT_LIN2MU(le16_to_cpu(ichunk[x]));
                  }

                  break;
            case STREAM_DTMF:
                  for (x = 0; x < ZT_CHUNKSIZE; x++) {
                        p->chan.readchunk[x] = wc_dtmf(p);
                  }
                  break;
      }

      /* Work with Zaptel now */
      /* XXX Might be able to optimize this some XXX */
      zt_ec_chunk(&p->chan, p->chan.readchunk, p->chan.writechunk);
      zt_receive(&p->span);
      zt_transmit(&p->span);

      /* Fill in transmission info  */
      for (x = 0; x < ZT_CHUNKSIZE; x++) {
            ochunk[x] = ZT_MULAW(cpu_to_le16(p->chan.writechunk[x]));
      }

      /* Transmit the pending outgoing urb */
      if (usb_submit_urb(out)) {
            printk("wcusb: 'write' urb failed\n");
      } else {
            p->urbcount++;
      }

      /* Readsubmit read URB */
      if (usb_submit_urb(in)) {
            printk("wcusb: 'read' urb failed\n");
      } else
            p->urbcount++;
      /* Clear I/O state */
      p->iostate = 0;
}

static void wcusb_read_complete(struct urb *q)
{
      struct wc_usb_pvt *p = q->context;

      /* Decrement number of outstanding URB's */
      p->urbcount--;

      if (!p->flags & FLAG_RUNNING) {
            /* Stop sending URBs since we're not running anymore */
            return;
      }


      /* Prepare for retransmission */
      q->dev = p->dev;

      if (p->iostate & WC_IO_READ) {
            static int notify=0;
            if (!notify)
                  printk("Already ready to read?\n");
            notify++;
      }

      /* Note that our read is now complete */
      p->iostate |= WC_IO_READ;

      if (IO_READY(p->iostate)) {
            /* Transmit side is complete, lets go */
            wcusb_do_io(p, p->pendingurb, q);
      } else {
            /* Let the transmission side know we're
               ready to go again */
            p->pendingurb = q;
      }

      if (p->timer && !--p->timer) {
            if (p->devclass == WC_KEYPAD) {
                  if(debug) printk("Checking keypad\n");
                  wcusb_check_keypad(p);
            } else {
                  wcusb_check_interrupt(p);
            }
      }

#ifdef PROSLIC_POWERSAVE
      if (p->devclass != WC_KEYPAD) {
            if (p->lowpowertimer && !--p->lowpowertimer) {
                  /* Switch back into low power mode */
                  p->idletxhookstate = 1;
                  if (p->txhook == 2)
                        p->newtxhook = p->idletxhookstate;
            }
      }
#endif      
      return;
}

static void wcusb_write_complete(struct urb *q)
{
      struct wc_usb_pvt *p = q->context;

      /* Decrement counter */
      p->urbcount--;
      if (!p->flags & FLAG_RUNNING) {
            /* Stop sending URBs since we're not running anymore */
            return;
      }

      if (p->iostate & WC_IO_WRITE) {
            static int notify=0;
            if (!notify)
                  printk("Already ready to write?\n");
            notify++;
      }

      /* Prepare for retransmission */
      p->iostate |= WC_IO_WRITE;
      q->dev = p->dev;
      
      if (IO_READY(p->iostate)) {
            /* Receive is already done, lets go */
            wcusb_do_io(p, q, p->pendingurb);
      } else {
            /* Let the receive side know we're
               ready to go again */
            p->pendingurb = q;
      }

}

static int StopTransmit(struct wc_usb_pvt *p)
{
      p->flags &= ~FLAG_RUNNING;

      if (p->devclass == WC_KEYPAD) {
            struct wc_keypad_data *d = p->pvt_data;
            d->running = 0;
      }
      while(p->urbcount) {
            schedule_timeout(1);
      }
      printk("ending transmit\n");
      return 0;
}

static int flip_relays(struct wc_usb_pvt *p, int onoff)
{
    unsigned char ctl;
    unsigned char data;
    /* Read data */
    if (wcinp(p->dev, 0x12, &data))
      return -1;
    /* Read control */
    if (wcinp(p->dev, 0x13, &ctl))
      return -1;
    /* Setup values properly -- Pins AUX3 & AUX4 control the relays */
    ctl |= 0x18;
    if (onoff) {
      data |= 0x18;
    } else {
      data &= 0xe7;
    }
    if (wcoutp(p->dev, 0x12, data))
      return -1;
    if (wcoutp(p->dev, 0x13, ctl))
      return -1;
    return 0;
}

static int InitPrivate(struct wc_usb_pvt *p)
{
      int x;
      unsigned int readpipe;
      unsigned int writepipe;
      /* Endpoint 6 is the wave-in device */
      readpipe = usb_rcvisocpipe(p->dev, 0x06);

      /* Endpoint 7 is the wave-out device */
      writepipe = usb_sndisocpipe(p->dev, 0x07);


      for (x=0;x<2;x++) {
            p->dataread[x].urb.dev = p->dev;
            p->dataread[x].urb.pipe = readpipe;
            p->dataread[x].urb.transfer_flags = USB_ISO_ASAP;
            p->dataread[x].urb.number_of_packets = 1;
            p->dataread[x].urb.context = p;
            p->dataread[x].urb.complete = wcusb_read_complete;
            p->dataread[x].urb.iso_frame_desc[0].length = ZT_CHUNKSIZE * 2;
            p->dataread[x].urb.iso_frame_desc[0].offset = 0;
            p->dataread[x].urb.transfer_buffer = p->readchunk + ZT_CHUNKSIZE * x;
            p->dataread[x].urb.transfer_buffer_length = ZT_CHUNKSIZE * 2;

            p->datawrite[x].urb.dev = p->dev;
            p->datawrite[x].urb.pipe = writepipe;
            p->datawrite[x].urb.transfer_flags = USB_ISO_ASAP;
            p->datawrite[x].urb.number_of_packets = 1;
            p->datawrite[x].urb.context = p;
            p->datawrite[x].urb.complete = wcusb_write_complete;
            p->datawrite[x].urb.iso_frame_desc[0].length = ZT_CHUNKSIZE * 2;
            p->datawrite[x].urb.iso_frame_desc[0].offset = 0;
            p->datawrite[x].urb.transfer_buffer = p->writechunk + ZT_CHUNKSIZE * x;
            p->datawrite[x].urb.transfer_buffer_length = ZT_CHUNKSIZE * 2;

      }


      return 0;
}

static int InitTransfer(struct wc_usb_pvt *p)
{

      int x;
      p->urbcount = 4;
      p->flags |= FLAG_RUNNING;

      for (x=0;x<2;x++) {
            if (usb_submit_urb(&p->dataread[x].urb)) {
                  printk(KERN_ERR "wcusb: Read submit failed\n");
                  return -1;
            }
            if (usb_submit_urb(&p->datawrite[x].urb)) {
                  printk(KERN_ERR "wcusb: Write submit failed\n");
                  return -1;
            }
      }
      /* Start checking for interrupts */
      wcusb_check_interrupt(p);
      return 0;
}

static int wc_usb_hooksig(struct zt_chan *chan, zt_txsig_t txsig)
{
      struct wc_usb_pvt *p = chan->pvt;

      switch (p->devclass) {
            case WC_PROSLIC:
#ifdef PROSLIC_POWERSAVE
                  if (p->txhook == 4) {
                        /* Switching out of ring...  Be sure we idle at 2, not 1 at least
                            for a bit so we can transmit caller*ID */
                        p->idletxhookstate = 2;
                        p->lowpowertimer = POWERSAVE_TIME;
                  }
#endif      
      
                  p->txhook = -1;
                  switch(txsig) {
                        case ZT_TXSIG_ONHOOK:
                              switch(chan->sig) {
                                    case ZT_SIG_FXOKS:
                                    case ZT_SIG_FXOLS:
                                          p->newtxhook = p->idletxhookstate;
                                          break;
                                    case ZT_SIG_FXOGS:
                                          p->newtxhook = 3;
                                          break;
                              }
                        break;
                        case ZT_TXSIG_OFFHOOK:
                              p->newtxhook = p->idletxhookstate;
                              break;
                        case ZT_TXSIG_START:
                              p->newtxhook = 4;
                              break;
                        case ZT_TXSIG_KEWL:
                              p->newtxhook = 0;
                              break;
                  }
            case WC_KEYPAD:
                  switch (txsig) {
                        case ZT_TXSIG_ONHOOK:
                              break;
                        case ZT_TXSIG_OFFHOOK:
                              break;
                        case ZT_TXSIG_START:
                              break;
                        case ZT_TXSIG_KEWL:
                              break;
                  }
                  break;
      }
      return 0;
}

static int wc_usb_open(struct zt_chan *chan)
{
      struct wc_usb_pvt *p = chan->pvt;
      if (p->dead)
            return -1;
      switch (p->devclass) {
            case WC_KEYPAD:
                  p->hookstate = 0;
                  zt_hooksig(&p->chan, ZT_RXSIG_ONHOOK);
                  break;
            default:
                  break;
      }
#ifndef LINUX26
      MOD_INC_USE_COUNT;
#endif
      p->usecount++;
      return 0;
}

static int wc_usb_close(struct zt_chan *chan)
{
      struct wc_usb_pvt *p = chan->pvt;
      p->usecount--;
      if (!p->usecount && p->dead) {
            /* Someone unplugged us while we were running, so now
               that the program exited, we can release our resources */
            zt_unregister(&p->span);
            ifaces[p->pos] = NULL;
            if (p->pvt_data)
                  kfree(p->pvt_data);
            kfree(p);
      }
#ifndef LINUX26
      MOD_DEC_USE_COUNT;
#endif
      return 0;
}

static int init_device_pvt(struct wc_usb_pvt *p)
{
      struct usb_device *dev = p->dev;

      if (dev->descriptor.idProduct == 0xb210) {
            struct wc_keypad_data *d = kmalloc(sizeof(struct wc_keypad_data), GFP_KERNEL);
            printk("wcusb: Found a WC Keyed Phone\n");
            p->devclass = WC_KEYPAD;
            if (!d) {
                  printk("wcusb: kmalloc failed in init_device_pvt\n");
                  return -1;
            }
            memset(d, 0, sizeof(struct wc_keypad_data));
            p->pvt_data = d;
            d->count = 0;
            d->running = 1;
            d->tone = NULL;
            return 0;
      } else {
            p->pvt_data = NULL;
            p->devclass = WC_PROSLIC;
      }
      return 0;
}
      
static void *wc_usb_probe(struct usb_device *dev, unsigned int ifnum, const struct usb_device_id *id)
{
      struct usb_config_descriptor *config = dev->actconfig;
      struct wc_usb_pvt *p=NULL;
      struct wc_usb_desc *d = (struct wc_usb_desc *)id->driver_info;
#if 0
      char auxcon = 0;
#endif
      int x;
      for (x=0;x<WC_MAX_IFACES;x++)
            if (!ifaces[x]) break;
      if (x >= WC_MAX_IFACES) {
            printk("Too many interfaces\n");
            goto fail;
      }

      p = kmalloc(sizeof(struct wc_usb_pvt), GFP_KERNEL);

      if (!p)
            goto fail;

      memset(p, 0, sizeof(struct wc_usb_pvt));
      p->hardwareflags = d->flags;
      sprintf(p->span.name, "WCUSB/%d", x);
      sprintf(p->span.desc,"%s %d", d->name, x);
      sprintf(p->chan.name, "WCUSB/%d/%d", x, 0);
#if 0 /* Make them choose with zaptel.conf */
      p->chan.sig = ZT_SIG_FXOKS;                           /* Assume FXOKS signalling for starters */
#endif
      p->chan.sigcap = ZT_SIG_FXOKS | ZT_SIG_FXOLS | ZT_SIG_FXOGS;      /* We're capabable of both FXOKS and FXOLS */
      p->chan.chanpos = 1;
      p->span.deflaw = ZT_LAW_MULAW;
      p->span.chans = &p->chan;
      p->span.channels = 1;
      p->span.hooksig = wc_usb_hooksig;
      p->span.open = wc_usb_open;
      p->span.close = wc_usb_close;
      p->dev = dev;
      p->pos = x;
      p->span.flags = ZT_FLAG_RBS;
      init_waitqueue_head(&p->span.maintq);
      p->span.pvt = p;
      p->chan.pvt = p;
#ifdef PROSLIC_POWERSAVE
      /* By default we can't send on hook */
      p->idletxhookstate = 1;
#else
      /* By default we can always send on hook */
      p->idletxhookstate = 2; 
#endif      
      ifaces[x] = p;
      p->sample = STREAM_NORMAL;

      if (init_device_pvt(p)) {
            printk(KERN_ERR "wcusb: init_device_pvt failed\n");
            goto fail;
      }
      
      if (usb_set_configuration(dev, dev->config[0].bConfigurationValue) < 0) {
            printk(KERN_ERR "wcusb: set_configuration failed (ConfigValue 0x%x)\n", config->bConfigurationValue);
            goto fail;
      }
      if (InitHardware(p)) {
            printk(KERN_ERR "wcusb: Hardware initialization failed\n");
            goto fail;
      }

      if (InitPrivate(p)) {
            printk(KERN_ERR "wcusb: Unable to initialize private data structure\n");
            goto fail;
      }
      if (p->hardwareflags & FLAG_FLIP_RELAYS) {
            flip_relays(p, 1);
      }

      if (zt_register(&p->span, 0)) {
            printk("Unable to register span %s\n", p->span.name);
            goto fail;
      }

      if (InitTransfer(p)) {
            printk(KERN_ERR "wcusb: Unable to begin data flow\n");
            goto fail;
      }
      printk("wcusb: Found a %s\n", d->name);
#if 0
      wcinp(p->dev, 0x13, &auxcon);
      printk("Register 0x13 is set to %x\n",auxcon);
#endif
      
      return p;
fail:
      if (x < WC_MAX_IFACES)
            ifaces[x] = NULL;
      if (p) {
            if (p->pvt_data) {
                  kfree(p->pvt_data);
            }
            kfree(p);
      }
      return NULL;
}

static void wc_usb_disconnect(struct usb_device *dev, void *ptr)
{
      /* Doesn't handle removal if we're in use right */
      struct wc_usb_pvt *p = ptr;
      if (ptr) {
            StopTransmit(p);
            if (!p->usecount) {
                  zt_unregister(&p->span);
                  ifaces[p->pos] = NULL;
                  if (p->pvt_data)
                        kfree(p->pvt_data);
                  kfree(ptr);
            } else {
                  /* Generate alarm and note that we're dead */
                  p->span.alarms = ZT_ALARM_RED;
                  zt_alarm_notify(&p->span);
                  p->dead = 1;
            }
      }
      printk("wcusb: Removed a Wildcard device\n");
      return;
}

static struct usb_driver wc_usb_driver =
{
      name: "wcusb",
      probe: wc_usb_probe,
      disconnect: wc_usb_disconnect,
      fops: NULL,
      minor: 0,
      id_table: wc_dev_ids,
};

static int __init wc_init (void) 
{
      int res;
      res = usb_register(&wc_usb_driver);
      if (res)
            return res;
      printk("Wildcard USB FXS Interface driver registered\n");
      return 0;
}       

static void __exit wc_cleanup(void)
{
      usb_deregister(&wc_usb_driver);
}

MODULE_AUTHOR("Mark Spencer <markster@linux-support.net>");
MODULE_DESCRIPTION("Wildcard USB FXS Interface driver");
#ifdef MODULE_LICENSE
MODULE_LICENSE("GPL");
#endif
MODULE_PARM(debug, "i");

MODULE_DEVICE_TABLE(usb, wc_dev_ids);

module_init(wc_init);
module_exit(wc_cleanup);


Generated by  Doxygen 1.6.0   Back to index